PCEUT 513: Basic Concepts in Pharmacogenetics and Toxicogenomics

Winter Quarter, 2016
Tuesday and Thursday 9:00 – 10:20 AM, RR-134

Course Coordinators:
Dave Eaton, Ph.D. Ken Thummel, Ph.D.
Professor, Environ. Occup. Health Sci. Professor and Chair
Dean, Graduate School Pharmaceuticals, Box 357610
Office: G1 Communications, Box 353770 Office: H272N Magnuson HSB
Phone: 685-3785; Fax: 685-4696 Phone: 543-0819; Fax: 543-3204
e-mail: deaton@u.washington.edu e-mail: thummel@u.washington.edu

Office hours: by appointment

TA: Katrina Claw, PhD; kclaw@uw.edu

Prerequisites: Biochem 442 or Genetics 372 or equivalent, or instructor permission.

Website: https://canvas.uw.edu/courses/1029704

Course Description: This course will draw from multiple disciplines to provide a general understanding of molecular approaches to genotyping, as well as the understanding of genotype/phenotype relationships and gene-environment interactions as determinants of disease susceptibility. It will examine the molecular basis for interindividual differences in drug/xenobiotic disposition and application of that information for individualized drug treatment regimens and disease prevention strategies. It will also cover the application of array and sequencing technologies for the identification of disease susceptibility and drug response genes as well as potential environmental modifiers. Finally, it will explore ethics and policy issues relevant to testing for pharmacogenetic and toxicogenomic traits.

Learning Objectives: At the end of this course students should be able to:
1. explain the various technologies used to identify genetic polymorphisms, with particular emphasis on genes of pharmacological and environmental relevance.
2. be able to identify and understand the conceptual basis behind basic methodologies used to identify genetic variability in human DNA samples
3. explain the significance of genetic polymorphisms in the development, progression, and treatment of human disease.
4. appreciate the public health importance of genetic variability in specific multigene families of enzymes involved in metabolism of drugs and non-drug chemicals in the environment
5. understand the connection between environmental exposures, genetic polymorphisms, and risk for diseases of public health importance.
6. understand the role of genetic polymorphisms as determinants of adverse drug reactions and pharmacological efficacy.
7. read critically original scientific literature relating to ‘gene-environment interactions’
8. have the technical background necessary to appreciate the ethical, legal and social implications that arise out of pharmaco- and toxicogenomic research.
9. write professionally about one area of ‘gene-environment’ interaction with public health importance
10. integrate basic concepts of ethics into arguments for and against genotyping of populations for ‘environmental susceptibility’ genes.

Grading
The course will include 3 exams (multiple choice / short answer) over materials covered in class and assigned readings that will count for 75% of your grade (25% for each of 3 exams). The remaining 25%
of your grade will be based on your class term paper. An average numeric score of 80 will be approximately equal to a grade point score of 3.0; a score of 90 will be a 3.5; and average scores of 95 and above will be 4.0.

Readings
Textbook: There is no textbook required for this class; class notes, the lectures and posted readings should be sufficient for comprehension of the material. However, if you would like additional background material, we recommend the textbook, “Gene-Environment Interactions: Fundamentals of Ecogenetics (LG Costa and DL Eaton, Editors, Wiley Press, 2006) and “Pharmacogenetics: An Introduction and Clinical Perspective” edited by Joseph S. Bertino, et al. 2013. For students who feel that their background in basic molecular biology and genetics requires updating, we recommend any basic textbook in molecular genetics or medical genetics. A good text is: Strachan and Read’s “Human Molecular Genetics,” 2003 ($60 used paperback), or Human Genetics and Society (2008) by Ronnee Yashon and Michael Cummings.

Selected readings from the current literature will be posted on the course website. Again, these are intended primarily as an enrichment of the experience, although some parts of the readings may be discussed in class (e.g., Wylie Burke’s lectures).

Hard copies of lecture notes will generally not be provided on the day of the lecture in class. Powerpoint and pdf files of the lecture notes can be accessed on-line, through the course website. An exception will be made when the lecture is not available at least 24 hr prior to the start of class.

Term Paper
You will be asked to choose a particular disease that has both a genetic and an environmental component to it, and write a brief paper (12-15 pages, double spaced) describing what is known about the etiology of the disease. In the paper, you should cover:
1. the fundamental biology of the disease, including which genes are involved
2. identify candidate genes that might act as susceptibility genes, and discuss their function
3. review the basic epidemiology of the disease that has led to discoveries that genetic factors are involved
4. identify and discuss any environmental factors that have been implicated in the etiology of the disease; environmental factors are defined in their broadest terms, and include diet, viruses and other microbiological factors, occupation, lifestyle factors, etc.
5. identify and discuss at least one “ELSI” problem – real or potential, that has surfaced in your study of the disease.
6. include all appropriate references

Possible diseases for discussion include, but are not limited to:

- Parkinson’s Disease
- Amyotrophic Lateral Sclerosis (ALS: Lou Gehrig’s Disease)
- Alzheimer’s Disease
- Cancer, any kind, especially: Colon, breast and brain cancer, leukemia
- Diabetes
- Alcoholism, Smoking dependence
- Certain birth defects that may have a genetic component
- Heart disease
- Lung diseases (e.g, COPD, asthma)
LECTURE SCHEDULE, WINTER QUARTER, 2016

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Lecturer</th>
<th>Textbook</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan. 5</td>
<td>Introduction: genes, environment and disease</td>
<td>Eaton</td>
<td>A, B Ch. 1 & 2</td>
</tr>
<tr>
<td>Jan. 7</td>
<td>Technological approaches to understanding genotype-phenotype relationships I – DNA analysis</td>
<td>Kelly</td>
<td>A, B Ch. 3</td>
</tr>
<tr>
<td>Jan. 12</td>
<td>Technological approaches to understanding genotype-phenotype relationships II – RNA analysis</td>
<td>Kelly</td>
<td>A Ch. 3</td>
</tr>
<tr>
<td>Jan. 14</td>
<td>Technological approaches to understanding genotype-phenotype relationships III – Proteomics and metabolomics analyses</td>
<td>Thummel</td>
<td>Handout only</td>
</tr>
<tr>
<td>Jan. 19</td>
<td>Epigenetics</td>
<td>Cui</td>
<td>Handout only</td>
</tr>
<tr>
<td>Jan. 21</td>
<td>Applications of GWAS and Next Generation sequencing technologies</td>
<td>Claw</td>
<td>B Ch. 3</td>
</tr>
<tr>
<td>Jan. 26</td>
<td>Polymorphisms, Enzyme Kinetics and Pharmacokinetics/Toxicokinetics</td>
<td>Thummel</td>
<td>Handout only</td>
</tr>
<tr>
<td>Jan. 28</td>
<td>EXAM 1 (from Jan 5 – Jan 21)</td>
<td>Thummel</td>
<td></td>
</tr>
<tr>
<td>Feb. 2</td>
<td>Precision Medicine – I (PGx and CYPs 2D6, 2C9, CYP3A5, 2C19)</td>
<td>Thummel</td>
<td>B Ch. 6A</td>
</tr>
<tr>
<td>Feb 4</td>
<td>Precision Medicine – II (PGx and VKORC1, HLA, CFTR)</td>
<td>Thummel</td>
<td>B Ch. 15, pgs 135-136</td>
</tr>
<tr>
<td>Feb. 9</td>
<td>No class</td>
<td>Thummel</td>
<td></td>
</tr>
<tr>
<td>Feb. 11</td>
<td>Precision Medicine – III (PGx and UGT1A1, TPMT, OATP1B1, OCT1)</td>
<td>Thummel</td>
<td>B Ch. 6B, 13, 7</td>
</tr>
<tr>
<td>Feb 16</td>
<td>Toxicogenomics-1 (CYPs 1A1, 1B1, 2E1, FMO3, ALDH2)</td>
<td>Eaton</td>
<td>A Ch. 7</td>
</tr>
<tr>
<td>Feb. 18</td>
<td>Toxicogenomics-2 (NATs, SULTs, GSTs, mEH, NQO1)</td>
<td>Eaton</td>
<td>A Ch. 8, 9</td>
</tr>
<tr>
<td>Feb. 23</td>
<td>EXAM 2 (from Jan 26 – Feb. 18)</td>
<td>Thummel</td>
<td></td>
</tr>
<tr>
<td>Feb. 25</td>
<td>Mechanisms of DNA Damage and Polymorphisms in DNA repair</td>
<td>Eaton</td>
<td>A Ch. 10</td>
</tr>
<tr>
<td>March 1</td>
<td>Genomic Variation and Drug Development</td>
<td>Thummel</td>
<td>Handout only</td>
</tr>
<tr>
<td>March 3</td>
<td>Rare Diseases – Genetic Discovery and Treatment</td>
<td>Thummel</td>
<td>Handout only</td>
</tr>
<tr>
<td>March 8</td>
<td>ELSI related to Pharmacogenetics and Toxicogenomics</td>
<td>Wylie Burke</td>
<td>A Ch. 21-23</td>
</tr>
<tr>
<td>March 10</td>
<td>ELSI related to Pharmacogenetics and Toxicogenomics</td>
<td>Wylie Burke</td>
<td>A Ch. 21-23</td>
</tr>
<tr>
<td>Final Week</td>
<td>EXAM 3 (Wed, Mar 16, 10:30-12:20; material from Feb 18 – Mar 10); Term paper – due 5 PM, Friday March 18</td>
<td>Thummel</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Lecture notes will be on the web page at least 24 hours before class if available. If they are not posted by that time, hard copies will be provided on the day of the lecture in class. Any additional readings will be listed on the website if links are available.
Guest Lecturers:
Wylie Burke, Professor and Chair, Department of Bioethics & Humanities, UW; wburke@u.washington.edu
Ed Kelly, Associate Professor, Department of Pharmaceutics, UW; edkelly@u.washington.edu

UW Disability Statement:
Access and Accommodations: Your experience in this class is important to me. If you have already established accommodations with Disability Resources for Students (DRS), please communicate your approved accommodations to me at your earliest convenience so we can discuss your needs in this course.

If you have not yet established services through DRS, but have a temporary health condition or permanent disability that requires accommodations (conditions include but not limited to; mental health, attention-related, learning, vision, hearing, physical or health impacts), you are welcome to contact DRS at 206-543-8924 or uwdrs@uw.edu or disability.uw.edu. DRS offers resources and coordinates reasonable accommodations for students with disabilities and/or temporary health conditions. Reasonable accommodations are established through an interactive process between you, your instructor(s) and DRS. It is the policy and practice of the University of Washington to create inclusive and accessible learning environments consistent with federal and state law.

Academic Integrity Statement:
Students at the University of Washington (UW) are expected to maintain the highest standards of academic conduct, professional honesty, and personal integrity. The UW School of Public Health (SPH) is committed to upholding standards of academic integrity consistent with the academic and professional communities of which it is a part. Plagiarism, cheating, and other misconduct are serious violations of the University of Washington Student Conduct Code (WAC 478-120). We expect you to know and follow the university's policies on cheating and plagiarism, and the SPH Academic Integrity Policy. Any suspected cases of academic misconduct will be handled according to University of Washington regulations. For more information, see the University of Washington Community Standards and Student Conduct website.